ECL 4340

POWER SYSTEMS

LECTURE 11 TRANSMISSION LINE REACTIVE COMPENSATION, Y-BUS MATRIX, POWER FLOWS

> Professor Kwang Y. Lee Department of Electrical and Computer Engineering

1

REACTIVE COMPENSATION

Reactors are removed during heavy lead: Full load is 1.90 kA at unity pt, 730 kV.

 $= A\left(\frac{130}{\sqrt{3}} \cancel{6}\right) + B\left(1.9 \cancel{6}\right)$ = 442,3 124.8° \$VIA Vs = V3 (442.3) = 766.0 tel

 $V_{RNL} = \frac{V_s}{A} = \frac{766}{0.9313} = 22.6 \quad \text{#}V_{LL}$ $\therefore \quad \text{%} \quad VR = \frac{222.6 - 73\circ}{73\circ} \times 10^{\circ} = 12.68\%$

730

a) % Noltage regulation

Vs = A VRFL + B IRFL

8

A=D= cash (XI)= 0.73/3 / <u>a.209</u>° pm B=97.0 / 87.2° S-C=1.37 × 10⁻³ / <u>90.06</u>° S

 $_{jX'}$ $-j\frac{X'}{2}\left(\frac{N_c}{100}\right)$ l_B $-j\frac{X'}{2}\left(\frac{N_c}{100}\right) = R'$ -16 \rightarrow uu $-\frac{Y'}{2}\left(\frac{N_L}{100}\right)$ $\frac{1}{2} - \frac{Y'}{2} \left(\frac{N_L}{100} \right) V_{\rm B}$ $\frac{\gamma'}{2}$ $\frac{\gamma'}{2} \neq$ b) Compensation: 75% during light load. $\frac{Y'}{2} = \frac{Y}{2} \frac{t_{anh}}{Y_{1}} \frac{Y_{e}}{Y_{1}} = (7.011 \times 10^{-4} / \frac{90}{20}) (1.012 / -0.03)$ $= 3.7 \times 10^{-7} + j.7.954 \times 10^{-4} g$ or Y' = 7.4 × 107 +) 14. 188 × 104 5 With 75% shunt compensation, $Y_{eg} = 7.4 \times 10^{-7} + 14.188 \times 15^{-4} \left(1 - \frac{75}{106}\right)$ = 3.547 × 10 4 (89.88° S $\begin{aligned} \mathcal{Z}_{og} &= \mathcal{Z}' = \mathcal{Z} \quad \frac{5\lambda h M}{M} = (97.3 \ \frac{1}{2} \frac{1}{2}$

20

in the system to relate the bus current injections, the bus voltages, and the branch impedances and admittances

YBUS EXAMPLE Determine the bus admittance matrix for the network shown below, assuming the current injection at each bus *i*

shown below, assuming the <u>current injection</u> at each bus *i* is $I_i = I_{Gi} - I_{Di}$ where I_{Gi} is the current injection into the bus from the generator and I_{Di} is the current flowing into the load

Using the Y_{BUS}

If the voltages are known then we can solve for the current injections:

 $\mathbf{Y}_{bus}\mathbf{V} = \mathbf{I}$

If the current injections are known then we can solve for the voltages:

 $\mathbf{Y}_{bus}^{-1}\mathbf{I} = \mathbf{V} = \mathbf{Z}_{bus}\mathbf{I}$ where \mathbf{Z}_{bus} is the *bus impedance* matrix

28

